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I. Goals of the Research

This Grant aimed at an understanding of the strongly

nonlinear electrical properties of charge density wave (CDW)

conductors.

Some progress had been made, in understanding weakly

nonlinear properties, with models which retained the spatial

randomness of the pinning potential (due to crystal

inhomogeneities). The complexity of a random potential (when

combined with the dynamic, many-body and nonlinear nature of the

problem) meant however that progress into the strongly nonlinear

regime was extremely slow, despite the attentions of numerous

researchers. The PI adopted what was at the time a somewhat

unfashionable approach. It was decided to see whether the

randomness in the pinning potential might not in fact be an

unnecessary complication. It was decided to attempt to solve for

the dynamical properties of incommensurate chains. These have a

periodic rather that a random pinning potential, but they retain

the collective, or many-body, aspect as well as the nonlinearity

of sliding CDW's. Once their dynamic properties are solved we

must compare with experiment to see whether these models really

contain the essence of CDW conduction.

The results are summarized in the next section (II). A more

4complete account of the progress under the grant is contained in
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the publications (Section III), with some ongoing work described

in the final section (V). In section IV, I outline a new

perspective that has emerged from the results of all these

projects taken as a whole.

II. Theory vs. Experiment

From the publications (in many cases from the Figures) it is

seen that incommensurate chains give a surprisingly good account

of the following dozen measurements: both components of complex

ac conductivities as functions of field and frequency, in both

metallic and semiconducting CDW materials; dc characteristics;

scaling of ac and dc conductivities; elastic properties -

Young's Modulus and Q-factor as functions of voltage; bulk

oscillations; and both amplitude and phase of both the second

and third order mixing properties. In addition, incommensurate

chains have been seen to exhibit complete mode locking over the

entire range of dc fields and external frequencies. (These

results resolve a dispute between the Illinois and the AT&T Bell

Laboratories groups. The manuscript is being prepared for

Physical Review Letters and the abstract is included in sectioni III.)
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III. Publications
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i. Sliding Dynamics of the Incommensurate Chain

Physical Review Letters, 52, 65 (1984).

2. Dynamics of Incommensurate Structures: An Exact

Solution

- Physical Review (Rapid Communications), B30, 2974

(1984).

-.Q

3. Electromechanical Properties of Charge Density Wave

6. Conductors

Physical Review Letters, 56, 1194 (1986).

4. Oscillatory Instability in the Dynamics of

Incommensurate Structures

Physical Review Letters, 58, 1903 (1987).
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Physical Review (Rapid Communications) B35, 7745

(1987).
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to be submitted to Physical Review Letters.
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Sliding Dynamics of the Incommensurate Chain

Leigh Sneddon
Mlarytin Fisber i ciool or' Phi sics . Brandeis Unitt'rsit% Waltham. Alas iachusef Is 02251

(Received 8 Julv 92

The dc dynamics of the ,liling incommensurate chain is reduced to a purely static prob-
[em. The sliding system is described by a static hull function which becomes singular,
above the critical pinning, strength, as the velocity approaches zero. Both ac and dc
sliding d%-namics are determined numerically for the cases of weak and strong pinning
and short- and long-range interactions. Excellent agreement is obtained with experiments
on sliding charge-densitY waves near threshold, both in NbSe 3 and in TaS3.

PACS numbers: 72.15..Nj, 72.15.Eb, 72.20.11t

Incommensurate structures, such as charge- N- o~ and II/2; equal to an irrational, p, was
density waves (CDX's) and adsorbed monolayers, studied by considering H/27,=M,, %.V , where W.S
are now familiar in solid-state physics.' The dis- is an integer, having no common factor with N,

coveryZ of electrical conduction due to sliding and ' /Npas N- o.
CDW's raised a wide range of questions concern- Equation (1) was Fourier transformed to re-
in- the dynamics of sliding incommensurate struc- place the uj's by phase-shifted Fourier compo-
tures. This article reports progress in the ana- nents iv,=a, exp(iam)

lvtic study of such dynamics and in the under-N
7standing of related experimental results. wm = exp(- im t~uw).V-1 Z exp(- imHj)uj (2)

The incommensurate system studied here is a .i j
simple ex'tension of the model of Frenkel. and
Kontorova.' and the dimensionless equations of for in-=O, 1,2......V -1. Using Bessel functions
motion can be written to expand the cosine in (1) gives terms with an

explicit N dependence. As N- -for a bulk veloc-
u, T, K, (2 uj -o1_ -U, P) ity v >0, these terms can be shown to vanish

f - cosf~j ujto every finite order of perturbation in P and
= f cosf'U ~(1) oscillate at arbitrarily high frequencies about

where j = 1, 2,....N, P is the strength of the pin- zero. To treat the limit N- -*, only those terms
ninq force, and 21T/l1 its wavelength. The case of with no explicit N dependence were retained.

This gives

c "f P w,,} ,(3a)

iv -(211 -_7A osI~ - ijJ1tvw PF ,} (3b)

for 1 N V'2, where

o Cos I1j - 2 a., cos(On i~Ij ,) (3c)

For constant v, stattc solutions, with i, - 0 was clearlv indicated. The results thus agree
fr . 1, were found. A finite nu mher, j,, , wtth present knowledgeo' at low velocilites and are
(the /t were re tai ned and thmr respondina also cwetoall )rdersft perturbation theorv

treai Ir the retained u ,to ;ill orders. The coup- solutiisn, we cr tete't fr stablitt to small per-

.j(ereitested in two wavy-i. Firs.-tly;, t he Sif''' tln' o aretii i~ ittic, f xpIti:iL

+, ',,In"cti'ittic W:I-i calrillated. Wkith wa piil- trntslitin tnvarintew ha-, t ransfi r~ne'l the dc
c ,.irI''i' c i wt thincrasi, . s I i I ir !w ti, nfinite tort; :I-(,LiUrate

;: r -iirr'5C t I f.',:i- rrr 'dIfl !1 . .. ir"! ~a pr-im.

F I r t ' ii'' p1 ni t he. :, .F* ' fhr F <irf tn 1t. illS t ! t he
I sn''i~1~t, vith 11"? rf, ' 111 1. h .1 Itn I I(I i e rlcn ence
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v,*=constxe""'' ' . (A corresponding result for ent techniques were therefore used to determine
excitations about the v =0 limit was obtained by the ac response of the sliding incommensurate
Novaco.') Further, there is a static hull function chain near threshold. Having reduced the dc

describing dc sliding solutions with v > 0. That dynamics to a static problem is very useful. The
is, uj - rt is a function of a single variable: ac response of a time-dependent solution is much

more difficult to obtain than that of a static solu-
tion. for which the ac response, like the dc char-

where the periodic function g. is given by acteristics, can be determined without numerical

g(x) = 2 7 a,, cos(n fix ,) (5) integration.
I < N2 The CDW's in NbSe. and TaS3 are three-dimen-

sionally coherent.' One effect of higher dimen-
attention has been given'-6 to the way, at sionality is to increase the coordination of the

f 0, g. changes from being analytic, for weak system. To mimic this increased coordination

pinning, to singular, for strong pinning. The
crudely, a sixfold-coordinated chain was con-present studies showed the amplitudes a. de- sidered with K, = K = K3 =1;K ,P>3

caving exponentially with m when r > 0, even with
By considering in (3) a small perturbation about

strong pinning. The functiong, is then analytic a static dc solution, the ac response, o w)= a'
for r > 0. Thus for strong pinning a breaking-of- + ia" was determined, for"P = (51/2 + )/2 and
analyticity transition occurs in the new hull func- T

the dielectric response - a"/w are shown in Fig.

old. The complicated time dependence of the 1. The basic features in Figs. 1, 3, and 5 are
u,(t) near threshold is expressed, by (4), corn- preserved with increasing 1  The threshold
pletely in terms of the emergence of singulari- force was estimated from the dc results.
ties in this new hull function.

Linear ac response, in the presence of a dc Figure 2 shows experimental results' for

field, has been studied experimentally 7 in the Rea(,) and E(&) of the sliding charge-density

CDW systems NbSe 3 and TaS 3 At fields a few wave in NbSe 3. Figure I is seen to account well

thaT A eo for the voltage and frequency dependence of both
times threshold low-order perturbation theory,
is not useful; but this region is the most common-
ly studied experimentally because the nonlinear
effects are larger than in the high-field region, VT

and sample heating is not a problem. The pres- oS3 2MH

1.8
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FIG. 3. ac response of incommensurate chain with E

* Infinite-range interactions; c.f. Fig. 4 and text. OT
r. 80 160 240

, components of the ac response. This may not bias volloge Vd, mv)

have been expected since CDW dynamics are FIG. 4. ac response (Ref. 7) of TaS3 .
dominated by randomly positioned defects"' while
the chain 4s in a periodic potential.

In experiments' performed on TaS3 at 130 K, is thus exhibited by this classical model, and can
the sharp interference features seen' with NbSe, no longer be regarded' s as evidence for a quantum
(Figs. I and 2) were not observed. TaS3 becomes mechanical theory of CDW conductivity.

",a semiconductor' 2 below the CDW transition, Although these calculations do not probe asymp-

while NbSe, is metallic. 2 At 130 K the conductivi- totic low-frequency threshold properties it is
ty of TaS3 has fallen two orders of magnitude interesting to speculate that the detailed form of
from its value at the transition. As discussed the potential becomes less important as one ap-
earlier, 13 this reduces the screening capacity proaches threshold. In any case, the comparison
of the normal electrons and can allow long-range of theory with experiment seen in Figs. 1-5 shows
Coulomb interactions of the CDW with itself, that, in fields comparable to threshold, the in-

The sliding dynamics of Eq. (1) with long-range commensurate chain gives a much better pic-
interactions, K, = 2/,V for all p, was therefore ture of CDW dynamics than might have been sus-
determined. The results (with /.rn, =20) are pected.

shown in Fig. 3, and can be compared with the
experimental results in Fig. 4. Not only does
including long-range interactions account for the no a0goOoacaO

absence of interference features, but the proper-o0
ties of the incommensurate chain are seen to o8 -

match those of TaS, extremely well. The dif- j
trc-nc'e between the ac properties of NbSe, and 6 0,if X

TaS, can now be understood for the first time as - 0

being due to the presence in TaS3 , as suggested 0

earlier, 13 of long-range Coulomb interactions 04

of the CDW with itself.
The ac response was also determined with r 02
0, and compared to the cic con luctivitv 7- 1 . f,'P

The results twith .. ,., =20) are shown in Fig. 5 W/ HP .
for long-range interactions. Similar results 2 3 4 1 6 7

were obtained for the sixf)Wld-coordinated chain. FIG. 5. Scalin- of fivid-d pnependt (crosses) and
The experimentally observed' ' sc:ilingr, of frroin -%I,,p.ndn-nt lcire.esI ,'ondl'tivities in the
field- and frequency -dependent condtuctivities, ',lassi,,al 'hain.
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P. Littlewood, and thanks A. Zettl and G. Griner Rev. Lett. _9 292 (1992).
511 M. Flemingetal., Phy-s. Rev. B 1' , 556,0 (1975);

for permission to reproduce experimental results . . .
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Dynamics of incommensurate structures: An exact solution

Leigh Sneddon
.5 The arie Fisher School ot Phisics. Branaets Lniierirt.

Walhamn, A fas suetuserts t)22.74
(Received 13 March 1984)

A simple exact solution of the incommensurate chain with infinite-range interactions is obtained with the

use of both analytic and graphical techniques. The ground states and all metastable stales are idenitified.
Results are derived for the depinning transition, the sliding threshold, and the excitation spectrum as
function of pinning strength and applied ficeld The ac response is also obtained and has a loiw-frequency
singularity at threshold, but the dielectric constant is bounded, as seen in charge-de nsi ty-wave experiments.

Incommensurate structures, such as charge-density waves constant _f, in which case a' and u are constant, ndone can
(CDW's) and adsorbed monolayers. are well known in search for solutions 7 with ag/at=O. Equations (2). (4),
solid-state physics.' The incommensurate harmonic chain and (5) then simplify8 to
has recently been seen2 to provide a useful model of CDW j( =a~+ g ( Hj -- c a)i6)
conductivity and long-range interactions have been seen 2,3

to be important in semiconductor CDW systems, e.g., TaS3. v(1I+ g') =P sin(x +g) - g )

If every particle in a chain interacts equally with every When v - 0. (6) is a simple transcendental equation which
other, the equation of motion can be written can be solveo graphically. For P < I -here is a unique solu-

A" t()-. snH-~ 1 tion [Fig. I (a)]. It is continuous and odd so that, using 13),
U PsnH i) 1 Uj when v =0, f=-0, and there is no sliding threshold- For

P > I there are multiple, discontinuous solutions. g, many
*Here j-i,2 with nonzero means [Figs. 1(b) and 1 Ic)]. The threshold

force is clearly

(L= im N'~U ,fT= max -(21r) g(x)dx . (8)

P is the strength of the pinning force, and 27T/11 its Thus the critical vleof P'defining the depinning transition
wavelength, an irrational. Fishera has studied the related
problem where P is replaced by a randomly distributed vari-U able. The purposes of this Rapid Communication are to

*provide a considerably simpler exact solution of the incom- 0 8 (a)
* mensurate case (fixed P) and to derive a number of new

exact results. - v2 0.4
Solutions to I) can be written

where x tx-.2-rt=(s).and -.

t I t= 1-,- 2 i:f(x (3).08

-Substituting I 2) in (I) and using the identity

or i~rrational and Il x - i I F( iss

* ~ui~"~J Psinix. - (4) 0

whe.re, or su ,k s ciocitv i 1 al U, tit, . ,atislies

Fhu , -Ie torm 12) ild in equation of' motion which
lerenils 'n , - , ,. tiut not on .U), xhibiting :he

7 .tnls,mnrolind i;rince oit he incommensurate system.' FIG 1 Stationars, -tatcs 0 , t at P- (h 1 P1. tzrounid
Itle rirjrocrt !d hysteretic properties of (1) ire current- states tor -1. , - . o - .. Cr. 11) '

mt:cr n, t,,1 t cmIi Iit The rest ot this irticle will consider ametastable state.

* 30 2974 '14T'he -Smerican Physical Society
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below which the sliding threshold and multiplicity of solu- -(M 0 -- M A) ' where N,) ul= (Pcos( H/ - L', -I 1), anu
tions disappear," is immediately seen to be Pc = 1. M.L N The Green's func'ion G (:) I: - At

The threshold force can be determined graphically, using - M )- is easily calculable by summing the usual expan-
(8). for all P. Further, in the limit P- P , the mul- sionin powers of MI. With
tivalued region in Fig. I shrinks towards the origin where
(7) gives G t (u) (z)=- j)-8y,. Xj =Pcos(H/-U,)-I

" x-g 3/6+(P-P,)g=0 . (9) one obtains G=G0 -- G0 TGo, where T')='(N(I-t)] -V
and gz(:)=N' -l (:-A I. Thus the poles of G, which

and (8) gives, with elementary calculus, fr=[9!(4rr)](P are eigenvalues of the stability problem, are the roots ot
- P,)*T as P- P,+, where 'VT= 2 . For large P one obtains /L(z)-1. A plot of M.(A) for real A. then immediately
fT _P-7r+O(P- /2 ). shows'0 that any g which occupies a finite part of the middle

Further, it is immediately clear from Fig. I(b) that at branch (dashed line in Fig. 1) will be unstable. Further, as
f= fr there is only one stationary state, gT. N- co, the largest root of A (z) = I remains an isolated ex-

Turning to dc dynamics, a =vt in (6) and g is continuous, citation. Transforming sums to integrals, it is straightfor-
As v- 0, g will approach gr as f - fT+ . It is easy to see ward to show that this eigenvalue is negative for any state g
from (7) that for x away from the critical value XT, which avoids the "unstable" middle branch. Thus any such
g-gr=0(-). In the vicinity of XT, putting X=XT+Y, state which is not the ground state is metastable. An exam-
x+g(x) =Xr+gr(xT" )+ h(y) and considering (7) in the pie of a metastable state is shown in Fig. I(c).
limit of small y and h(y) giveso vdh/dy=y+ah2, where Since the Green's function is known, the exact density of
a = - gr(x- )/2. Transforming by relaxational [(1) is massless] excitations, p( A) can be deter-

dw mined in the usual way. For P < P, transforming sums to-=-ah (3z )w(z ) (10)dz ' integrals, and writing ,(X) = -x(P 2 - (X -- I ))-/2/Tr, one
obtains for large N

where a= (a 2/v)i/3 and p = (V2 /a) 1/3 gives w"= -zw(z),

the solutions of which'I are the Airy functions Ai(-z) and p(X)=p(X)0(P 2 - (X +)2) +.- t ,5x .
Bi( -z). The boundary condition that h(y) be finite and which is shown in Fig. 2(a). The isolated excitation at A =0
negative for y < 0 as v- 0 means, integrating (10), that
w(z) - 0 as z-- oo. This eliminates Bi( -z), which is the sliding mode of the unpinned chain.
diverges as :- -o. Thus For P> Pc, f=0, the excitation spectrum p(A) wasdetermined for the ground state shown as curve (i) in Fig.

SV11 /3Ai'( - (a/v 2)'Pv) 1 (b). The result for large Nish (Y)= a 2 Ai(_(a/v 2)3y)

* and the limiting value of y= x- xT for finite h, as v-0, is where Xo= -I+Pcos[g(0+)]<0, and A0 < kp<0. This
(v 2/a)/ 3:o where zo is the first zero of Ai(-z). This spectrum is shown in Fig. 2(b). As P-P,+, (9) gives

y,,. result is seen graphically to give a dominant contribution X0=-2(P-Pr). Further, as P-P , Xp=-b(P-P,)
_. 2/

3 to f-fT in (3). Thus V=B(f-fr)31 2 , where where b is between 0 and 2 and is the root of
B- [27'a//(zoA)]1/2 and A=gr(x 1')-gr(X-). Further.
as P- P,+ using (9) gives j3 l J =cothl 3(1+b) 1

B 2 [113Tr/(3Zo) ]3/2(p _ -pI) -1/2

"33

Thus the depinning transition, and the T threshold ex-
ponent with a coefficient which diverges as P- P + , in P 0
agreement with Ref. 4, can be obtained quite straightfor- (a)

4 wardly for the incommensurate chain. The simplicity of the

present calculation is due to the elimination of the center-
of-mass coordinate (U) leaving a function of only one vari-
able to be determined in solving incommensurate dc dynam-
ics. 0.5

Further, it is possible to determine the energy and stabili- _

ty of each stationary state and thus specify, for P > Pc, -2 -1 0
which is the ground state, which are the metastable states,
and which are the unstable states. The energy correspond- (b)X) (C)
ing to Eq. (1) is 15

H-ZPcos(H + U )+ (4N)- 1(U,- UJ) 2

Using (6) and choosing g to minimize H shows that the 0,5
ground state has a single discontinuity, which moves from 0
to XT as Iincreases from 0 to fr (Fig. I (b)]. 4 3 -2 -4 -3 -2

To distinguish metastable from unstable states the linear
stability of stationary solutions ,UA; of I) must be studied. FIG. 2. Excitation spectra ,(,A) (a) !115. i-/ , ,hi 1'-3.
Replacing U by U-+ uj in (1) gives, to O(u1 ).u iO (c) P-3, 0< < /T

L =/ ~~ ~ ~~~~~ ..- % -% .% -. * .tv- . .. ... .. .

4 -.. ,',--,- ,... ' ';:,?_-?.? ...- £....?. . . ;... ?:.?& ? ?.?....? .

4 11 r r ,lht"h, i, I aV,) . . .: ._ _ = - = ,• = . . . ,
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Thus as P- P,' the gap in the ground-state excitation v/P

spectrum closes as (FP- P,)"' where 6t1 = 1. 06+
For P > Pc, the excitation spectrum was also determined /

for I > 0. For the ground state shown as curve ii) in Fig.
1 (b), one finds 04 +A/

(A). -1-P<X< X..

ej l[ _,gx _ .12 . < X . 02

f/P
where .=-1 - Pcos[xv -'gfsx,)]. and X_ < X.f< 0. As
I '. _ =-A (Jr-f)' 2 , where .4 (P)- (2/3) /2 0.2 04 06 08 10
as P- Pc This spectrum is shown in Fig. 2(c). Further, FIG. 3. dc characteristic for P-I x 5 () also (with matched
as

, thresholds and large v slopes) for single-particle model (Ref. 12)

x A D exp C(f -fp 1 11 (+ ) and NbSe3 CDW (Ref. 16) (A).

where D -2(2 i)'Pand C [A=_(PD- )(4a)' . That linear ac response of the pinned lattice. For P>P, the

is. as f- fr. the isolated excitation collapses exponentially result is
rapidly onto the edge of the continuum. Moreover, the gap ofw;f;P) = icail - 27r[Af- ii( E( iw. X_)

in the excitation spectrum closes as (fr-f) *2 where'-" t+ E(iou. T+ff]- I} 011)

* Finally, knowing the Green's function gives the exact where A=g(x1+)-g(xf) and

E2 P P+I - P - h ]

II
2 I-J1 coth' 1  _ _:1j [p+I1+i2J

The result (11) may be compared with CDW experiments single-particle case and E can remain finite, as is observed
for both the real and imaginary parts of o-(w) for all experimentally. 3

J1 !/ t and for all w. The single-particle model 2 is easily For nearest-neighbor interactions, the ground state g is
seen to have the property lim._ 0 - Imo-/w-- -c as .J* ft. more singular and some numerical determinations of depin-

* No such divergence has been observed experimentally.' As ning exponents for a stationary center of mass have been
w - 0 and f- - fT, the term in square brackets in (11) be- made."'i4 Equation (1) can be considered a mean-field
comes theory for the incommensurate chain with finite-range in-

teractions. The present straightforward solution may be
A- ( o I P( WI)' I useful in the ultimate analytic solution of sliding threshold

---( _ 1 )1/2 n 2( P2 I) " dynamics with short-range interactions. For constant f > fr
outside the threshold region, the :runcation procedure of

While A._ - 0 as I- fT, the dielectric constant, E - i(r/, Ref. 2 gives an accurate solution of Eq. (1), including the
nevertheless remains finite near Jr even as w) - 0. The en- response to small ac perturbations. As seen for example s

tire spectral weight of the single-particle model is at one fre- in Fig. 3, this combines with the present results for f <__ I-
quency which approaches zero at threshold. The pinned to give a complete steady-state solution of this system.
many-body system considered here has a broad spectrum of
excitations, only one edge of which approaches zero at The author thanks E. Gross for stimulating discLssions
threshold. This is the first explicit demonstration that in and the Air Force Office of Scientific Research for support
such a case the singularity in ,r is weaker than in the under Grant No. 84-0014.

IP. Bak, Rep. Prog. Phys. 45, 587 (1982) difference equations.
- 2L. Sneddon, Phys. Rev Lett. 52, 65 (1984) 9M. Peyrard and S. Aubry, J Phys. C 16, 1593 (1983), and refer-

3L. Sneddon. Phys. Rev B 29. 719 (1984) ences therein.
-D. S. Fisher. Phys. Rev Lett. 50, 1486 (1983) 10 de.r/dx- - as x - so Pcosl xr+ vritx- 1 I
5This periodicity can be seen to hold to all orders of perturbanton in 1i. Abramowitz and I A Stegun, Handbook of ,atthematical Func-

P tion (U.S. GPO, Washington, D C. 1964)
6An alternative elimination of U) was given in Ret. 2 12 Grdner, Z awadowskt. and P M Chaikin, Phys Rev Lett
'Such solutions were seen in the truncation procedure of Rey 2 to 46 511 (1981)

he dynamically stable and to match CDW properties in TaS1  13A Zettl and G GrUner. Phys. Rev B 29. '55 11984)
4Equation (6) was obtained by Aubry (see Ret. 9) for static ia -0) 14SJ Shenker and I. P Kadanoif. I Stat Phvs 27 31 11Q82)

solutions of the nearest-neighbor Lhan, and can he seen here and "The pinning strength %as thosen to he the same is in Rel 2, and
in Ret 2 to describe dc dynamics I, e 0) amd arhitrary-range in- not as a best fit in I'ig 3

. eractions as well Infinite-range interactiuns are :asier 'ecause IR %I I[leming. Ilhs, 'c% 11 22. itih). , N11)
with finite-range interactions, h ,s 041 and 17) become differential
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Electromechanical Properties of Charge- Density-Wave Conductors

Leigh Sneddon
Department o1 Physics. Brandeis Universiy, Waltham. Massachusetts 02254

(Received 31 October 1985)

A model of two mutally incommensurate, interacting, dynamical, many-body systems is present-
ed and solved. Quasiperiodic forms are shown to describe both the dc properties and the complete
set of linear excitations. By use of one system to represent the crystal lattice and the other a
charge-density wave (CDW), all the recently discovered, and as yet unexplained, electromechanical
properties of CDW conductors are shown to occur in this model. The internal degrees of freedom
of the CDW are shown to be of central importance.

PACS numbers: 72.15.Nj, 72.15.Eb, 72.20.Ht

Until recently the widespread interest in charge- linear electrical properties of CDW's -  (e.g., dc
density-wave (CDW) conductors has centered on their characteristics, ac response, ac-dc interference, and
nonlinear electrical properties.' Elegant experiments voltage fluctuations) can also give a satisfactory ac-
by Brill and Roark 2 and by Mozurkewich et al. 3 how- count of these new electromechanical properties. A
ever, have now shown that the motion of a CDW also model is solved which includes both the host-crystal
changes the mechanical properties of the host crystal. degrees of freedom and the internal degrees of free-
Speculation as to the origin of these phenomena has dom (IDF's) of the CDW. It consists of two interact-
included CDW domain-wall relaxation 2 and phason- ing mutually incommensurate chains, one representing
phonon interactions3 ; and a satisfactory calculation of the crystal lattice and the other the CDW. Conserva-
the current dependence of mechanical properties is tive and viscous interactions between the chains are

" still lacking. used to represent respectively the pinning force which
This Letter addresses the question of whether produces the CDW threshold, and the dissipation

single-domain, noncommensurate, classical, many- which results from CDW motion through the crystal.
body models, which have exhibited a variety of non- Dimensionless classical equations of motion for this

model can be written:

m + LAs _, +It W( X.J) ( * - &j) = -IAYJF(Xj) - EL ,  (1)

1,D UJp + Y. W(Xc))( &j - (.) = IF(X.J) +E, (2)

where m is the ionic mass, the inertia of the CDW is
negligible, (D' . and Uj are the displacements of particle the stiff-lattice limit (A >> F), (b, - (4(),, 8 and the
a a in the crystal lattice and particle j in the CDW, crystal lattice simply produces a rigid incommensurate
respectively, and 21ra and Hj are their respective potential through which the CDW moves, exhibiting a
undisplaced positions, so that variety of experimentally observed nonlinear electrical

S= D H+ 1properties.4-6
2tra +- [Hj + U1] (3) The first general result, which can be checked by

is the distance between them. The coefficients Ap and substitution for any A, is that stationary states, and
are the spring constants of internal, harmonic re- states of dc relative motion of the centers of mass of

storing forces in the lattice and the CDW, respectively, the two interacting chains, are described by quasi-
The function W(x) is a weighting function centered periodic forms
at x= 0 , and represents the spatial range of the dissipa- 0(t) = Q(y), U(t) =vt+ G(x),
tive interactions. The force Fbetween particles a and
j also depends on their separation Xj. E is the electric y = 2rc- vi, x - Hj + vi, (4)
ield acting on the CDW and - EL is the force which

keeps the lattice stationary. The incommensurate limit Q(Y + H) = Q(y), G(x+2ff) = G(x),
is approached by a consideration of V particles in the where v = (Uj), the CDW center-of-mass velocity.
crystal lattice chain. N in the CDW chain, and M/N Thus the quasiperiodic form first shown to describe
= 11/27r - a fixed irrational. The parameter jI is a the statics of a single incommensurate chain, 9 and sub-

* formal expansion parameter ultimately to be set equal sequently shown to describe its dc dynamics as well,4 is
to 1. This model thus treats the lattice and the CDW now seen to describe both the statics and dc dynamics
,s two separate entities, each distorting the other. In of two interacting dynamical systems.

1194 ,© 1986 The American Physical SocietyLIU , '',"; 4 4% ; "," ' ',. -.. .€.' ''"."'' . .'"..'2'-.-; ,.- ... ,- """- '"'""=."- "'-. """"-. .

! ',€ r3 , j '*' 'N ,/ ",' '; . "}. € ," '%"","" "" " ," .r' ,"" '- " -" "-'- ",",- -"'" ",-"..'-'-.'%" .' .-- " '- '--"-'- "-.- ,



VOLUME 56, NUMBER II PHYSICAL REVIEW LETTERS 17 MARCH 1986

* Further, the linear fluctuations of the dual interact- verse displacement amplitude at resonance is then a
ing system, both when static and when undergoing dc measure2 of "internal friction," Q-

* relative motion, are likewise characterized by quasi- Since the effect of the CDW on the Young's
periodic forms. If (b = ,, exp( - two) and u1 = iij modulus is of the order of a percent. 2 Eqs. (1) and (2)
x exp( - iwi ) are fluctuations in the crystal lattice and will be studied as an expansion about the stiff-lattice
CDW chains, respectively, a complete set of linear limit. This is most clearly done by expansion of the
fluctuations is given by solution in powers of the formal parameter ., which

premultiplies the forces distorting the lattice.
6, b=t)e2'*r(y). 5(t)=e xh(x), The calculation begins by replacement of U by
r(v+H) = r( ), h (x+2-r)=h(x), Uj +ii(t)e-' ' D by D=+4.(t)e- ", and -EL by
-vH)= " " -2EL +fae-w in Eqs. (1) and (2), of which the U's

where x and y are as in (4). The normal modes of the and (D.'s form a dc solution; retention of only terms

dual interacting system thus resemble Bloch waves.10  linear in ii, 0, and ff; and consideration of b,, of the

If the two chains do not interact, r and h are constant form, to 0(M 0 ), of a normal mode, i.e.,

and the excitations are simple traveling waves. Inter- exp(iq27ra (6)
chain interactions produce a quasiperiodic modulation
of each wave. In the special case of the stiff-lattice Multiplied throughout by exp( - iq2rra), and aver-
limit these excitations reduce to those of incommensu- aged over a, Eq. (1) then gives
rate single-chain systems, which have been studied nu- f+m (7)
merically in the static case (v=0)9 : We now see that W'-A(q)=MM'YZ~j 8f,

these excitations are "quasiperiodic Bloch waves."
Further, the exponential factors in 0,, and uj are waves where t '

with phase velocities, respectively, of w/q in the crystal Z2j=[F'(X=t) -iaW( X,) ] (1-je-,q,=. (8)
lattice and w/q -v in the CDW. Since the CDW is
traveling at v relative to the crystal, both waves are To determine f to 0(p.) in (7) only requires that
traveling at the same velocity in the laboratory frame. Z , and hence U, (D, and uj, be determined to

To compare the properties of this model with exper- O4 ll), i.e., in the rigid-crystal-lattice limit, for which

imental data, a small force f.e - "a' will be considered we may put P.= (D,,) =0. To determine U and uj,

to act on the crystal, and the resonant frequency, wo, the case of infinite-range internal CDW interactions 5

defined as the frequency at which the driving and the ("mean field theory") will be considered:
displacement are 7r/2 out of phase, 2 will be determined pDP Uj- p = Uj- (U). Use of Eqs. (3)-(6) and
as a function of the voltage across the system. The in- linearizing of (2) then gives (for q;e0 so that

-1 (uj) =0)

v . W( X.) h'(x )+[1 + , [C, + qv W( X,) }lh(x ) = .C,exp[ iq(27ra- x )], (9)

where X-=2fra-x-g(x), C. = F'(X) - iw
x W(X.)-vW'(X=)[l+g'(x)1, and g(x) is the
solution to

.g(x) +V LW(X.)[II+ g'(x) l= F(X,,), (10) [ aw",/Woo

subject to g(x+21T)=g(x). [The electric field E is
given by 27r)I dxg(x).

Equations (9) and (10) were solved numerically and
the results used with (5), (7), and (8) to determine 8f

'" above threshold. Below threshold, Eq. (2) was in-
tegrated numerically to a stationary state and then
linearized to calculate 6f to O(A) in (7). Since the
relative shift in resonant frequency is small, the real

and imaginary parts of 8f directly give .,o and Q-1
respectively, each to within a multiplicative constant. 5 '2 6 8 10

These quantities are shown in Fig. 1 as a function of E/E,

voltage, or E. W was chosen to be a Gaussian of FIG. I. Electromechanical properties of the ncommensu-

height 1 and width 6 and F had a maximum value of rate lattice-CDW model: relative shift in the Youngs
2.2 and resulted from a repulsive Gaussian potential of modulus (Awww,) and internal friction (-I. both plotted
width 3, with q -- and 0 = .12. in arhitrarv linear units.
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since g is periodic and continuous above threshold.
%W,,) Thus the rigidity of the CDW is coupled strongly to

the lattice below threshold, in this case producing a
gap, but less strongly above threshold. as indicated

I here by the disappearance of the gap.16

When we turn to the internal friction, below thresh-
,$ old many IDF's are suppressed by the pinning, while

above threshold more can be excited. These dissipate
energy and enhance Q-1. As the CDW velocity in-
creases further, however, the coupling between the
lattice and the CDW weakens and the excitation of

4 IDF's, and hence Q- ', decreases slowly.
", 0 10O00 2000X:

,VOLTAGE (0v The importance of CDW IDF's can also be demon-

strated by our leaving them out, for example, by mak-
FIG. 2. Electromechanical properties of TaS ; at 96 K ing the CDW stiffness coefficients Dp in (2) very

(Ref. 12). The vertical bars indicate the maximum scatter in large, so that U - (U) and uj vanish. One then re-
the data points. covers a model similar to that studied17 to illustrate a

symmetry-breaking effect of the CDW current. From
Experimental results' 2 are shown in Fig. 2. The cal- (7) and (8). 8f in this limit is, to O(g),

culated Aw2 reproduces the general form of the data. -ioW(2fr)-'f dx VW(27ra-x), a constant. Thus
It also contains a peak, however, which is not apparent to O(p. ) a rigid CDW produces no voltage dependence
in these data, although much smaller peaks have now in the crystal's mechanical properties, hence, the ef-
been seen in some samples.' 21 3 This difference fects calculated in Ref. 17 were O(A2). The presence
between theory and experiment may be due, for exam- of IDF's, however, allows a first-order contribution, as
pie, to the existence of a phason gap in the mean-field shown in Fig. 1. Since the crystal lattice is much
theory (see below), to the one-dimensionality of the stiffer than the CDW, first-order effects are much
model, or to inhomogeneities in the crystal. larger than second-order effects, and IDF's of the

The rapid rise of Q-1 above threshold is clearly CDW thus produce voltage-dependent shifts in
seen, with Q- 1 reaching a maximum well before w02 mechanical properties of magnitude larger than those
has leveled off, a feature emphasized in the original predicted with no IDF's.
experimental report. 2 The gradual decline of Q-i at The dependence of lattice properties on the CDW
higher voltages was not reported prior to these calcula- velocity, v, is also of interest. Without IDF's the
tions, and has by now been repeatedly observed.12, 13  sound velocity, s, is found17 to be an analytic function

A qualitative interpretation of the Young's-modulus of v at v-0, with an antisymmetric, linear leading
results is that, for small q, the rigidity of a CDW term and higher-order corrections that are much small-
pinned to a lattice enhances the rigidity of the lattice. er if, as is the case in CDW experiments, v << s. The
For fields larger than threshold, this mechanical cou- exhancement of the Young's modulus studied in this
pling of the two systems,14 ' 15 and hence the enhance- Letter, however, will produce a symmetric v-
ment of the Young's modulus, diminishes, dependent component 8 in s(v), which should there-

This decoupling of the sliding CDW from the lattice fore deviate from antisymmetry over observable CDW
excitations can be demonstrated particularly dramati- velocity scales much less than s. The inclusion of
cally with the choice of infinite-range CDW internal IDF's also results in the v - 0 limit being a singular
interactions. In this case the CDW's bare excitation limit, the threshold at which, for example, the electric
(phason) spectrum has a gap: wphason ,7

' 0 as q - 0. field is related to v in a nonanalytic fashion,5 and the
When the CDW is pinned to the lattice this results in a function g becomes singular. It is thus possible that 61
gap in the spectrum of the combined lattice-CDW sys- in (7), and hence the sound velocity, will also be non-

tem. [This was checked numerically by determining analytic functions of v. Thus, in addition to strongly
that 8/(w.q- 0)- 0 below threshold.] Above enhancing the current-induced shifts in lattice proper-
threshold, comparison of (9) to the negative of the ties, the CDW IDF's will contribute a significant sym-
derivative of (10) with respect to x shows that metric component to, and possibly also change the
h(x) - -g'(x) as q, u-0. Use of (4), (5), (7), analyticity of, the sound velocity as a function of CDW
and (8) then gives current.

a)(q, -0) A single-domain, incommensurate, classical, man%-
body model of the type that has exhibited a variety nt

f C d Y.F(21r~ ht - v ,i ( Xv) 0 electrical properties of' CDW concluctors has been
,d'xw & I: ( solved and seen to account for electromechanical prop-
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erries as well. As is the case for the electrical proper- therein] This problem is related to the inear exc:tations od
ties, the internal degrees of freedom 1 4

, 1 of the CDW static single incommensurate chain. A similar form was .iso
were seen to play an essential role. found by Ishii iRei. 7)

1 wish to thank J. W. Brill, K. A. Cox, M. C. Cross, tIn arriving at Eq. (8), we have eliminate a term

E. P. Gross, and A. C. Lilly for stimulating conversa- i ( .[ - -, exp - :q2-, a .
tions, and R. J. Maher and A. D. Zima for assistance
with a Gould computer. I am grateful for the hospital- When v =0 it vanishes. When vi0. its contribution to the

ity of the Philip Morris Visiting Scientist Program. sum in (7) can be seen still to 'banish as follows Ling 3)

during which this work was completed, and to the U.S. (4). and (5), and writing .x! = Ii - ,t. we .an Arie this jon-
iribution in the form

Air Force Office of Scientific Research for support

under Grant No. NP-84-0014. A I.-(t/Ot If , Y1 X)

where Y(x -- 27r)- (.v) Such a sum can be replaced h

ISee Charge Density Waves in Solids. edited by G. Hutirav the integral, here and subsequently, because ti 27,' an r-
and J. Solyom. Lecture Notes in Physics Vol. 217 rational.
(Springer-Verlag, New York, 1985). 12J. W. Brill. W. Roark, and G. Minion, to ne punlished.

2j W. Brill and W. Roark, Phys. Rev. Lett. 53. 846 i13A. Zettl. private communication.
1984). 14L. Sneddon, M. C. Cross. and D S. Fisher, Phvs Re.

3G. Mozurkewich. P. 1M. Chaikin, W. G. Clark, and Lett. 49, 292 (1982)
G. Gruner, in Ref. 1, p. 353. 15L. Sneddon. Phys. Rev. B 29, 719 (19841 The tlow of

4 L. Sneddon, Phys. Rev. Lett. 52, 65 (1984). normal current to screen charge fluctuations due to IDF's
5L. Sneddon, Phys. Rev. B 30. 2974 (1984). was considered here and shown to produce an enhancement
6L. Sneddon and K. Cox, to be published, of CDW damping with decreasing temperature in semicon-
'Related models have been studied in zero-current states ductors. This prediction was recently confirmed experimen-

" by use of continuum approximations and/or a rigid-lattice tally by R. M. Fleming, R. J. Cava. L. F. Schneemever, E. A
limit: See. e.g., G. Theodorou and T. M. Rice, Phys. Rev B Reitman. and R. G. Dunn (to be published)
18, 2840 (1978)- T. Ishii, J. Phys. Soc. Jpn. 52, 168 (1983), t 6This demonstration is to O(A ), it can be shown to all or-
T. Munakata. J. Phys. Soc. Jpn. 52. 1653 (1983). ders that the gap vanishes for t,0.

Angular brackets denote an instantaneous average over 17S. N Coppersmith and C. M. Varma, Phys. Rev B 30,
the appropriate chain. 3566 (1984)
9M. Peyrard and S. Aubry, J. Phys. C 16. 1593 (1983), 18The relative size of the symmetric and antisymmetric

and references therein. parts of s (v ) must await a solution with fnite-range CDW
10Similar forms describe electrons in a quasiperiodic poten- restoring forces. and hence no v = 1) gap The author is

tial [S. Ostlund, R. Pandit, D. Rand. H. Schellnhuber, and grateful to S N Coppersmith and C. M. Varma for a discus-
E. Siggia. Phys. Rev Lett. 50, 1873 (1983), and references sion of these issues
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O'scillaorv' Instabilitv in the Dynamics of Incommensurate Structures

Leigh Sneddon
WIorin Fi.sher 5~hool of Ph oC5. Brandeis L'nicersg i. Wailham. Mtassachuc'grx 02254

and

Kenneth A. Cox
Philiu Mtorris Research Center. Richmond. Virq'inta 2'3261

-~ (Received 27 Mlarch 1985)

\e -cport the discover,. of an osctllatorv. instability in the dy~namics of incommensurate structures.
The ,,iiliations SUrvive the thermods namic limit. The instabilitv occurs for both lone- and short-range

* ~intcric: iofl The frequenc aind .,tabilats of the oscillations are studied.

P V( -mes 27.+m. 72.15 E1b. -2. IS Ni. '2.20 Ht

Oua-.iperiodic or incommensurate systems haveat pletelN random phase variable P,~ is irrelevant.) It has
:ritdconsiderable interest in a wide ait fcn also provided' accounts of ac-dc interference experi-

:e~.includmeL Adsorbed lavers, structures of solids, the ments in the CDV compound TaSi. and the scaling of
% *n~et of chaos, and localization (see, for example. Refs. field- and frequency-dependent conductivities.

-I) The% also exhibit4 a variety of the nonlinear prop- The exact dc solution of this model is4 L,, (t )t
erties of slidint! *hre-densitv, waves (CDW's), includ- +g(Hj+ it) where g(x) is the solution of the bound-

n,- dc characteristics. ac response. ac-dc interference, ary-value problem
Ind elect romecha nical properties. cI+' P. g g ~+1)-~)%ke report the discover% of a new phenomenon. a bulk cl+' ~~)-.gx2f ~)
)"cIllator% instability, in the dynamics of sliding in com- This solution was used here as the initial configuration

mennsurate structures: and we study some of its proper- for a numerical inteieration of (1). with N particles. and
ties The existence of bulk oscillations is surprising since it was checked that the numerical procedure was stable.
Ohe oeneral belief has been that the phase of any oscilla- Bv addition of any small perturbation the dynamic sta-
fion,, in a sliding- noncommensurate system would vary bilitv of this solution can be studied. The voltage (F)

* - ~throuih the sample. thus cancelling the oscillations in vesstm pltiFg.Ihosherutofuca
the thcrmodsnamnic limit, as indeed occurs in perturba- vsuy thme resltsrsne in Figos. h andul 2f arech fo

timn theor%. " The instability is therefore breaking the P(X) -8sinx+12sin14x.
tiranslational sy mmetr% of the bulk noncommensurate It is immediately apparent that the dc solution is
I\\tcm. Finalls. in the light of this new result, we dis- dvnamically unstable, with oscillatory fluctuations grow-

:u,, the long- standing problem of oscillatory voltage ing exponenrtially at first and then s aturating. The ap-
tIuctuations in CDV conductors-

The first model swe consider is one for whose dc prop-
erties an exact solution is available." namely, a set of N
particies all1 Interacting equally with each other, subject
to a pinning, force P~x ) and a uniform force F:

21
U'1 =P(llj +L 1 )+L -LU) +F.,I

I lere 11 is the lattice spacing: U, is the displacement of 02
the jth particle (so that Ifj + U is its position): < 2

-N U~,. Px + 2r) P(x ): and we study the 0
limit N - and H/,2-an Irrational. Because CDW'S
ire overdamped.' purely relaxational dynamics is 1

I11ed, This model can be thought of as a me.n-field
thc,'r, for the i ncom mensu rate chain. Following a sim-
rlc constrUctionl it can he shown, how~ever, that it can 4 8 12 16 20
iko he considered a mean-lield theory of a CDW subject TIME (I

% i 'pIialk~ random ilitribution of identical pinning FIG. I. Voltage %s time for mecan-field ihcorn, with r-I oI.
Lcntcr,, M ith inlinite-ranve interactions, the distinction Niet the exponential divergence follow4ed hv saturation,
het'.k cen the q u.ii periodic phase variable l1b and a coii- ThiricterisnLc of an insidhilii in . noinlinear sN stem.

(D 1987 The Amecrican Pbs sical Society 1903

%0

- :-''.'.%



"V,)i.L ML fS. Nt,|u% is- PHYSICAL REVIEW LETTERS 4 M,\ 1A7

* The instability was observed for a wide range of ar,. with
c c, decreasing as aT increases. 15

2C The solution of the linear fluctuation equation at r,
6']t =r(11j+tvt)e provides some rudimentary in-
sight into the origin of the instabilit,. The exact solution
of the dc motion" showed that there are values of the
pinning potential (essentially the peak values) which ai, z ;. l/-locally, stable static solution avoids by having discon-

0 tinuities in the function g(x) defined above. Static solu-
tions do exist with particles in these regions, but such
solutions are unstable.' A sliding system, however, must

0 0 2have particles in these regions and a continuous g(x),
0 2 4 6 8 with dg/dx sharply peaked in these regions for small c.

CDW CURRENT(,) We find that the unstable fluctuation r/(x) has I rI larg-
FIG. 2. Frequency vs velocity for the Frenkel-Kontorova est just where dgldx is peaked. Thus the oscillatory in-

modei. The segments satisfy rw(H_,r) where n-2 for stability of the dc solution may be in some measure a dy-
the largest segrnent and cascades through n - t,2.3.4 as the re- namic consequence of the existence of unstable static
lOCit. is decreased further. states.

To see whether the oscillatory instability exists in
finitely coordinated systems we studied a minimally co-pearance of harmonic content in F(t ), as well as satura- o s
ordinated system: an incommensurate chain with onlytion. are both due to nonlinearity and the, are seen to nearest-neighbor interactions,

occur at the same time. as expected. Time series ob-
tained with N = 144, 233. and 377 are essentially indis- &J - P( A J
tinguishable. Thus the results shown in Fig. I describe
the thermodynamic limit and are not a finite-size effect. The incommensurate chain has been shown 4 to give anMoreover, a finite-size effect would not be expected to account of the difference between the ac and dc interfer-

show the exponential divergence seen in Fig. 1, which is ence properties of NbSe3 and TaS 3. A previously' ob-
instead the signature of a dynamic instability. tained 4 dc solution to (2) was used as an initialIn addition, we performed a stability analysis of the dc configuration in a numerical integration with N particles.

solution to (1) in the limit N- -. CDW experiments Increasing N sufficiently produced identical plots, ensur-
are often current driven, and so we considered () in the ing that the results represented the thermodynamic limit.
pre ence of -'normal electrons" by keeping fixed a total Different pinning potentials were studied. So long as
current. r+oT,F where a,, is the conductivity of the P(x) produced a threshold, whether or not P(x) con-,
linear, normal channel. It can be shown that, for any tained harmonics, resulting voltage-time plots showed
pinning potential, oscillations at (complex) frequency w precisely the exponential instability, followed by satura-
will occur under conditions of fixed total current '+o',F tion, that was seen in Fig. I for the mean-field case.
only if o) is a root of a(o) a,- , where a(co) is the Thus the instability occurs at coordination number
linear response function of the sliding structure. Thus, infinity and two. It is therefore expected to occur in in-
while an instability under conditions of fixed voltage F commensurately pinned systems at all intermediate coor-
would correspond to a pole of a crossing into the upper- dinations in one, two, and three dimensions.
half complex w plane, the instability shown in Fig. I, at The oscillation frequency as a function of v. for

6 fixed current c, corresponds to a zero of or crossing into nearest-neighbor interactions and the same P(x) as in
the upper-half plane. We solved the linear-response Fig. I, is shown in Fig. 2 and has some interesting
equation and obtained the zeros of a for different veloci- features, It is predominantly linear. Further, although
tics. At v -10 the result was a normal-mode frequency the large-ic limit has transients with the trivial frequency
whose real and imaginary parts both agreed precisely w ic which would be exhibited by a single particle in
with the diverging oscillation seen in Fig. 1, confirming P(x), once the instability takes over (c s 9) a new
that it shows an oscillatory dynamic instability inherent characteristic frequency and length appear which are
in the mean-field theor,, of the dynamics of incommensu- determined not only by P(x), but also by the sliding
rate structures. structure itself. In the large linear region in Fig. 2,

We calculated the complex normal-mode frequency at i'/o-(H/2.'r) 2 . That is, the oscillator, instability re-
-ifferent velocities. As the velocity decreases below II, veals the length scale It provided by the lattice spacing.
the /ero moves into the upper-half complex plane, signal- which is the length scale corresponding to the wave-
in in instability of bifurcation. There is thus a critical length of' a CDW.
,lcitv , above which the dc solution is stable (oscilla- Further. as r is decreased, there are a number of first-
t-rs dcca 'and below which the oscillations persist. order transitions, where c'"o chanLes abruptly, heing

',' 1 ) 1 4
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lixing in charoe-densitv-"ae conductors

Sen Liu and Lcwh Sneudon
rI" te fri F\i'her ' howi 4 1')ii \x-s IJrcnad'ii ( ,iii''r ti , .f d tt 2j5J

'ReL.:ed 13 Noember :0it)

Harmonic and direct ac mixing properties oi the Fukuama-l.ce-Rice model and the incom-
mensurate chain are determined and :ompared 'Aith experimental data. Field and frequenc
dependences of both the amplitudes and phases of both ol these respo ses are examined. Agree-
ment with experiment is generaitv good. For example. cIassicail models can %eid low harmonic-
mixing quadrature components simultanieousi, ,with substantiai :requencv dependence ;n oth
components of the linear response.

An interesting series of experiments, involving the non- d',namic limit- The applied frequencies were chosen to
linear mixing of ac signals in charge-density-wave have a rational ratio so that the response (in Lhe thermo-
(CDV) conductors, was initiated by Seeger. Mayer. and dynamic limit) is periodic. Transients were allowed to de-
Philipp: and thoroughly extended by Miller and co- cay for a time t,= T sutficientlv long that t0o=T and
workers. -< These experiments merit theoretical study in to2T give results that are indistinguishable within nu-
their own right as probes of the unique properties of CDW merical error. The sampling rate of the time series was
conductors. chosen high enough that increasing it further produced no

SFurther, the suggestion has been made that the results noticeable chanees.
mav prove difficult to reconcile with ant classical We now compare the theoretical results with those of

theorv. "'4 It is thus important to determine the ac mixing experiments. examining each feature of the data in turn.
* • properties of classical models of sliding CDW's to see

k hether there is indeed a failure of the classical picture of 1. HARMONIC-MIXING PHASE SHIFT
bulk CDW motion, and whether these experiments give us
evidence for Bardeen's fascinating proposal' that CDW The experimental result which has been most em-
conductors are exhibiting macroscopic quantum tunnel- phasized"-'4 is the failure of some experiments to observe
I n g. an 'internal" phase shift in the small difference-frequency

The principal experiments>S_ are direct mixing (or harmonic-mixing response. Classical models were conjec-
rectification) and harmonic mixing. The sample is driven tured' to yield nonzero phase shifts at high applied fre-
b,, a voltage of the form quencies o,. Wonnebergeri 2 then showed that the classi-

cal single-particle model exhibits a zero phase shift for all
E(r)-Eo+Eicos(olt+o)+E-cos(o2t) , (1) o, at large dc bias tields, He proved this result to leading

where EI and E2 are generally small compared to the order in perturbation theory and argued in an appendix
threshold voltage ET. The two measurements consist of that the result is valid evervw here above threshold.
detecting the component of the current with frequency (on Nonetheless, it was claimed that the nonobservation of a
w here (o No, - (0, for direct mixIng, and o j= 2I '- (0o phas, shift above threshold. where :n addition both com-
for harmonic mixing. The frequencies are chosen so that ponents of the linear ac response have substantial frequen-
oo is much smaller than coi and (o,. cy dependence. max he diflicuit to reconcile kith anN clas-

The properties of two different models are reported sical theor,. "  It was further claimed that this experimen-
here: the Fukuvama-Lee-Rice (FLR) model 7 of random tal observation proided particutarl, ,iL'nificant evidence

Spinning and the incommensurate chain.' Perturbation '  for CDV tunneiiniK
theory was used to obtain analytic information for the We determined the harmonic-ri\tne properties of :he
:ILR model at large bias fields E0. The incommensurate FLR model usin, perturbaton theor, .t .iLree dc bias

chain -%as simulated numerically to obtain solutions in the fields. The principal resuit is tlhat "he reponse com-
-tronv-coupling region closer to the sliding threshold field ponent at frequcnc, ,, is proportional to cos. ' 2o ) in
L"- f The equation of motion for the incommensurate the limit of small Wo, lor laree dc hbas tields tK, and all w''

Schamn with inrinite-range interactions M.I t is The ine component ',anishes lincark ,kith u,. Thus the

(,; du, classical FI.R inodei Aso exhihits i ,ero internal phase
S. .. u,, -+4,+Psin(1j+ u,,)+E(t) . (2) shift at laree bias tields.

-/ dt In that reion. however. the linear Ac response has no
where u, is the displacement of the jth particle, u. is the strong frequency dependence. It is theretore necessarN to
center-o-mass displacement. P is the pinning ,,trength. probe the reion ,)I oer dc bias closer to threshold. F-r
.nd II) is chosen to he ( 1- I )/2. this purpose. wke 'urn %) the results *or the incommensu-

liv simuiating Eq. (2) in systems up to 377 particles in rate chain.
si/c ve were -ible to restrict tinite-size eflects to the reiion Ieure I ,howk,, ,ome t pc. tLeid a ind o , e; endence,
cr. ,:hse t.o hreshold .nd ensure that -he results oh- ,i both olponents 0)1 the harmonic-insine -n'nil. It .-
tited it il ,)ther fields reliably reflected the c rmo- ,een that the thit-,,-phase corn ponent :s !on,,dr.mt,
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* n ocmmnsuat hdnin. FUture 2(h) showks :he ex- 0.0 Z5-
2cr men al it. in a 1: 2( howks thL eut

Aruc "oa\e neen ;'resented biased on iuanturn tuninelinge
- 0C.020'

-h 'u[e a In Hg. '(,0. the positions ftields) and
L 1 n ,, ) w The ls chianne in the samne sense wi~th ire- cs

i cc s seen oyperincnt ally . The present results for the .-

i!ncotmmensurate chain c-hange somewhat more rapidly
0.010.A.i h [rcaenc% than do the experimental data.

1h) ['he threshoij. The incommensurate chain is seen
n l ies. '(.) a.nd 2'(b) to -,ive the experimentally obered0105

qualitaitive :orms in the vicinity of threshold. The
thre-shoid-lowkering effect of' ain applied ac field is also ap-
P'a rent in the incontmensu rate chain results, the effect in- 0.000 CS .0.o 2 2'3 2.5
:reasina as the ac frequency decreases, as observed experi- eoE

cmentall\E

A comparison with Fig,. 2(c) then shows that these :JI)RECTiFICATION

tnreshoid features reveal substantial differences betwkeen 500 - EXPERIM"T

the p~roperties of the classical chain and the results of the
1-25 MHz

dcuantum turtneiinz 'anaivis. 400 -

(c) The nei'atice dips. The experimental data [see Fig.
7Thd nhk that for lower frequencies a), the harmonic- 30

-' ning response goes negastive above a (frequency- 200 2MHz

dependent) theld (the phase switches rapidly from a value / \
* at )r near zero to one at or near 180'C) Thereafter the 200-

respnonse approaches zero from below. Above a certain 10 M~

trciaenc%. however, this no longzer happens and the 1 c-so MHz
L0.

arimonIC-mnixing response is always positive.
This points up another qualitative difference between 0

nc twko ,cis of theoretical results: While the incommensu- 0 20 40 60 80 100 120 140

_.:e :hain. like the experimental results, shows an ow1 bi V

%N e ich the resp' onse no longzer changes sign, the FIG. 3. dc field (Eo) and frequency (awi ) dependencies of- the
a aai~nturn tanneiinLe analys;is appears to show a sign change direct-mixing current (.N - 1 , JuIdIt ) maL'mtude (a) the in-

*.r ill (01 commensurate chain. 233. P - 3.0. and I -, =030. (h)
(J) Beii'K threshoid. The calculated amplitude of the experiment (Ret.2)

* armnonic i: v-ixine sieal is about itwo or three orders of
macwnitude les than the peak above threshold, which is
,onti~tcnt wkith the experimental data [see Fig. 2(b)]. perimental data are seen to be reasonably %kei I reproduced

by the incommensurate chain.

Ill. DIRECT1-MI[XING PHIASE

V. CONCLUSION

Li.\peri men tal.- the response at an -(t) - (t) to the
cuine input signal of Eq. ( I) is found to he proportional The classical incommensurate chain ha, been een to
(0 tocs)(1 -4-o) fr mall ( 0. A. leading-order perturbative provide a fairl\ complete a ccount of t he !icld and frequen-

* tution of the -i .R m~odelI)3 showed this same feature. cy dependencie, 4f both amplitude and ;ha. e :ompnonents,
Thiu :onclusion can be seen to be true to all orders as fol- of the direct ind barrmonic-mi\ino responses oi IidinL

*. Consider the case o I=(. Equation (I) is then, sk mi- CD1) %
metric .kth resnect to interchanging o), and wa. The total Foeani. h:iilnetc.iicinorepod
-v-rtnc nse urrent ittreQuencv plus or minus (OJ\.then )% ome nonobscrvatinn 4i Kh ,rmon i -n i it 2tra

: . a In ihu mvmm.tr%. WritineI) -1, in Wa),, Inilt has, been cesoj ed I,\ ic )sArv.(_!ion :ha3i 10 n'c
w, h'u i n req a Ires J(1~) 1 . 1,) (1)o 10 'Ohilt" lhave heen 'Cee cxp, in1 Li'1..ciK ~si

1 *0 3/ ro .0 ive n If the input tields ire theories can i,:,)unt :or ri c 'itsis 0r,i MCs ihL\"Cer
''I inCs 1% 'hittimne the orinr ot timne, the !,%% mental iincer*_iitcs. It '1~t *\ ' :ntcresti:'e iow 'o ;,ai'

ii a 'uxc ,cponsc is, fill cosne bth cxrcrimcntiai inc: 'hcorcii i !,,a.ic m~t tcrmincT1,11e

-e i( irm cir ii( l\. i . 2
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smaller than the in-phase component, but appears !o be I!. | \R1(I(*-XIXIN(; MAGNITII)E
approaching a nonzero limit as wo approaches tero. Vs wo
decreases throueh 0.05. 0.025 , and 0.0125 the lut-of- ince he harmonic-mixing phase ,hift is 2enerails
phase component shows practically no chane on the scale smail. we locus now on the magnitude. Figure 2(a) ,ho %s

of the plot. the rield 'E 0 ) ind t*rcquency (wa ) dependencies of :he
This limit is generally small. For the data shown in Fig. manitude of the harmonic-mixing response. as calculated

1. (o1?o, is about 0.01. it corresponds to a phase shift of
about 10'. which is the reported resolution of the experi-
ments. -5 Experimentally w /'wi was chosen to be about 0.012, HARMONIC MIXING

0.001. We found that this phase shift decreases as E 1 and INCOMMENSURATE CHAIN

E, are increased with the other parameter fixed. The
value of (a, in Fig. I was chosen approximately to maxim- -.___

ize the phase shift. zoo

Earlier work has established substantial frequency -

dependence in both components of the linear ac response W o

in this region. One may thus conclude that classical 5I . 0.so

theories can indeed account for the absence of strong "\
quadrature in the harmonic mixing and simultaneous
presence of strong frequency dependence in the linear o.oo0.

response.' 4  
-

The above classical results do appear to show a nonzero
quadrature, however, and if a classical picture were ap- -0.004
propriate, one would expect to see a phase shift under dc field E,
some experimental conditions. A harmonic-mixing phase
shift has, in fact, been reported. 5 The ratios E,/ET and Al,,A HARMONIC W
E,/ET were smaller than in the experiments-' 3  that saw Boo I -2 M z X N G

no phase shift. This is consistent with our observation (b) 2XPERVmEt4-

above that the phase shift decreases as El and E2 in- /o\\
crease.

Turning to the region below threshold, the calculated
out-of-phase component is found to be much larger than 400

the in-phase one for small wo. This is consistent with ex- /2 /- "  t

perimental reports" of an internal phase shift of about 200

.r/2. - 0W

0-
20 40 080 00 120 140

HARMONIC MIXING Vbi.. (my)

0.003- 
!NCOMMENSURATE CHAIN -200

0.002" 0.025 (N377t Ai 1nAi HARMONIC MIXING
'- in-ohase 2000 - 2 MHz

0013 (N-233)Iase00253 (N02331 (C Mz) TUNNELING THEORY
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MODE LOCKING IN CHARGE DENSITY WAVES: A CLASSICAL THEORY

Kenneth A. Cox* and Leigh Sneddon**

*Philip Morris Research Center

PO Box 26583, Richmond VA 23261

**Department of Physics, Brandeis University

Waltham, MA 02254.

ABSTRACT

A substantial disagreement between mode-locking experiments, and

predictions based on a classical model, were previously

interpreted as proof of the fundamental deficiency of the

classical model. We report classical calculations which disprove

the predictions, and agree with the experimental data. Contrary

to the two previous reports, classical models exhibit complete

mode locking at high fields and frequencies. The importance of

nonlinear resonance is stressed. We present results for the

differential resistance, spectral response and phase boundaries.
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IV. Collective Nonlinearity in Solids

When nonlinearity drives many degrees of freedom in dynamic

incommensurate systems, these models reproduce the properties of

charge density wave conductors (CDW's) in an unexpectedly wide

range of experimental situations. The collective and nonlinear

1. properties of these dynamical systems are thus frequently much

more important than the precise nature of the pinning potential.

In this section, the role of the internal degrees of freedom is

elucidated in a variety of experimental observations, for example

the existence of the threshold; the shape of the I-V

characteristic; ac/dc coupling and interference; dissipative

effects; and elastic phenomena.

a) The Threshold.

The fundamental issue of the existence of a threshold in

non-commensurate systems can be thought of rather naturally in

terms of collectivity. In an incommensurate system, a weak

d pinning potential excites distortions with the wavevector(s) of

the potential, and also their harmonics. The harmonics decay

exponentially in strength1 , however, so that an infinite number

S. J. Shenker and L. P. Kadanoff, J. Stat. Phys. 27,
631 (1982)
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.a:. of degrees of freedom are not excited. There is no threshold
2.

As the pinning strength is increased, the regime of

exponential decay gets pushed out to higher and higher harmonic
4.

number (through the nonlinearity). At a finite critical pinning

strength, the harmonics never decay exponentially, but only as a

power law. At this point all harmonics are contributing and the

problem is a collective one. It is precisely at this point that

the threshold becomes finitel.

A random pinning potential excites all fourier components,

0n no matter how weak it is, because it contains all fourier

components. Thus random pinning is a collective phenomenon, no
.

matter how weak the potential. Correspondingly, a random pinning

potential has a finite threshold, no matter how weak the

potential.

b) The I-V curve.

We can also see collectivity "turn on" in the I-V curve.

0Consider a straight line, S, through the origin with slope equal

to the high field differential conductivity (see Fig 5). The

actual I-V curve is offset below S. This "dc offset" can be

understood as due to the excitation of a continuum of internal

2 Peyrard and S. Aubry, J. Phys C 16, 1593 (1983) and

references therein.
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degrees of freedom (IDF's) . The idea in the above discussion of
* threshold works here too. At high fields the potential is

e&7fectively weak (since the CDW is moving over it too fast to

deform appreciably). The random potential is always collective

and produces an offset even at high currents.

The incommensurate potential does not. It can be shown from

perturbation theory that the I-V curve approaches the line S at

high fields. That is, the offset is not present in low-order

perturbation theory. When IDF's are treated to all orders,

however, the offset is seen to develop as the field is lowered.

This is of course also when the nonlinearity is exciting many

IDF's and making the problem truly collective.

c) Interference Effects.

The effect of long range interactions on interference

effects provides two slightly more interesting examples of the

role of collectivity.

i) "Universality"

First, there is an interesting comparison between the

properties of the randomly and incommensurately pinned systems.

In the weakly nonlinear regime (weak pinning or high fields) it

can be seen from perturbation theory that long range interactions

14
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How can NbSe3 get around that? By having strong short-range

elastic interactions. Short-range elastic interactions favor

distortions at long wavelengths. If the dominant distortions are

at wavelengths much larger than the CDW wavelength, the washboard

S--frequency will remain relatively well-defined, and the system can

behave non-linearly and yet avoid the "catch 22".

Having longer-range interactions, for example Coulomb

*interactions, however allows shorter wavelength distortions to

play a larger role. An infinite-range interaction which is

independent of distance, for example, offers a restoring force

0; which is independent of the wavelength of the distortion, and

thus does not favor long wavelength distortions at all. The

.hort wavelength distortions will then smear out the microscopic

frequency, and the interference features will fall victim to the

"non-linear catch 22".

iii) Experimental Results

In a similar fashion to the theory of vortex flow,

FS perturbation theory was used to predict interference features in

- the frequency-dependent conductivities of sliding CDW's3

4, Experimental confirmation came immediately in studies of NbSe 3
4 .

3 L. Sneddon Phys. Rev. B29 725 (1984).

4 A. Zettl and G. Gruner Phys. Rev. B29, 755 (1984).
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wash out the ac/dc interference features of randomly pinned

systems (see below). In the same regime, however, perturbation

theory shows that an incommensurate chain will produce ac/dc

interference features whether the elastic interactions are short-

or long-range.

What happens to incommensurate chains in the strongly non-

linear sliding regime, where the interference features are

strong? The features become vulnerable to long range

interactions (see Publication 1). Thus again, as we approach

threshold in FK systems we enter a collective regime in which

their properties imitate those of randomly pinned systems.

ii) "Non-linear Catch 22"

Why do long range interactions wash out interference

features in randomly pinned systems? The answer is that the

interference is subject to a "nonlinear catch 22". Interference

is of course a nonlinear effect, and the source of nonlinearity

is the pinning, so for interference to exist the system must be

0 being distorted by the pinning potential. This distortion,

however, locally and incoherently modulates the CDW wavelength,

and hence smears the washboard frequency. Thus, to get ac/dc
-p.

coupling at all, the system must suffer a smearing out of the

frequency that defines the interference feature.

15
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The experimental results showed what were called inductive

dips: the dielectric constant can become strongly negative at the

interference feature. The non-perturbative solution of the

incommensurate chain then showed us (Publication 1) that these

inertial dips,as well, could be understood as the nonlinear,

collective response of a classical, massless system.

TaS 3 , however, did not show these features 4 , and the

suggestion was made that long- range Coulomb interactions in the

semiconducting TaS 3 were responsible (Publication 1). The

mechanism may be precisely the non-linear catch 22 outlined

. above. This proposal can be probed a little further, however.

Coulomb potentials will be easier for the conduction electrons to

screen away if the underlying charge fluctuations occur at low

frequencies; and also if the normal conductivity is high.

Mihaly et a15 examined both the frequency- and temperature-

dependence of the interference properties of TaS 3. They found

that sharp features did indeed re-emerge at lower applied

frequencies and also at higher temperatures, where the normal

.* conductivity is enhanced in the semiconductor. While careful

0 qualitative tests still remain to be performed, these results are

clearly qualitatively in agreement with the "catch 22".

2'.!

5 Mihaly et al
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d) Viscosity Enhancement
'°

Collectivity also has dissipative consequences. Because a

CDW carries condensed charge, whenever it is deformed there will

be, as noted above, charge accumulation, which the normal

carriers will then strive to screen. Normal currents are

dissipative, however, and these normal screening currents were

predicted 6 to enhance the viscosity or damping of the CDW motion,

the effect predicted to grow larger as the temperature is

decreased, roughly proportionally to the normal resistivity in

the semiconducting materials. The predicted effect on the

S temperature-dependence of the I-V characteristics was first

qualitatively verified by Monceau. About two years after the

theoretical prediction, another series of experiments by Fleming

et al. also confirmed that the viscosity had essentially the same

temperature-dependence as the normal resistivity.

e) Elastic Phenomena

The collective nature of CDW transport also plays an

. important role in the elastic properties of CDW conductors. A

rigid CDW can couple to the lattice modes 7 , enabling a sliding

CDW to make the sound velocity anisotropic. The effect would be

6 L. Sneddon Phys. Rev. B29, 725.

7 S. N. Coppersmith and C.M. Varma Phys. Rev. B30, 3566
(1984)
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very small, and an analytic function of the CDW current. When

the internal degrees of freedom of the CDW are taken into

Saccount, however, the effct.L becomes much larger (see Publication

3). Mathematically, the effect becomes first order in the

lattice-CDW coupling, while without the IDF's, only second order

effects are possible. Physically, the IDF's are enabling the CDW

to get a "grip" on the lattice, so that to deform the lattice,

one must also deform the CDW, and this contributes to the lattice

stiffness. As the CDW starts to move relative to the lattice, it

has less time to for the IDF's to adjust, and the grip of the CDW

on the lattice is not as strong, and the stiffness of the lattice

0 diminishes, as seen experimentally. Further, the IDF's produce a

sliding threshold at which the dynamics is singular. This is

consistent with the experimental observation8 of a fractional

exponent in the Young's Modulus.

- The collective nature of the CDW transport also plays an

- important role in the internal friction of elastic vibrations.

Below threshold, many of the IDF's are pinned by the pinning

potential and their response to an external driving is limited.

0. It is likely that there is a gap in their excitation spectrum.

.- As the applied electric field passes above threshold, the gap

would vanish, and the IDF's suddenly become more easily excited.

The excitation of IDF's dissipates energy, and thus leads to a

marked increase in the internal friction.

8 J.W. Brill and W. Roark, Phys Rev. Lett. 53, 846 (1984).
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f) Conclusion

If the function of randomness is only to introduce

collectivity and nonlinearity, then we have a rather satisfactory
situation. At high fields, incommensurate systems are not

collective, and so randomness is essential. At high fields,

however, we can use perturbation theory to solve random pinning.

At low fields, incommensurate systems become collective as well

as nonlinear and thus much more realistic. Further, it has

proved possible to solve for many of their properties in this

regime. Thus incommensurate systems may well be, when combined

with the HIGH-field solutions of randomly pinned systems,

£4 completing a solution of sliding CDW's by providing a theory

which includes the most important physical features, and yet

which is also soluble, in the LOW-field, or strong coupling,

sliding regime.

V. The Threshold: a Surviving Challenge

When the threshold field for conduction is approached, the

.r incommensurate chain becomes strongly distorted at all length

scales. As a result, the threshold combines the all the richness

of critical phenomena (such as singular responses with universal

exponents) with the additional challenge of being a dynamic

0, process, far from equilibrium.

The ideas of the renormalization group have been used

20
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successfully to construct a transformation which has a fixed

point describing the depinning transition in incommensurate

- dynamics 9 . This transformation establishes the full universality

class of this transition. The work is particularly novel and

I will, it is hoped, provide a basis for a theory of the threshold

of CDW dynamics. This extension, to the asymmetric, dynamic case

of the conduction threshold, is the subject of ongoing work.

%,

9 L. Sneddon, A.J. Kassmnan, S. Liu manuscript in

preparation.
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